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Using the example of  solidification of  a plane steel ingot calculated thermal stresses and deformations 
obtained in the elastic, elastoplastic, and viscoelastic approximations are compared. 

Introduction. One of the most important problems in ingot pouring, both in the case of individual parts and in 

the continuous method, is the determination of technological regimes which will produce parts without voids. Solution 

of this problem by a purely experimental approach is practically impossible, since voids develop both on the surface 
and within the casting. 

This fact is one of the reasons for the increased interest of researchers in computational methods for 
determining stresses and deformations in the solidifying ingot. 

It is well known that the stressed-deformed state in the casting is determined by the nonsteady state 

temperature field. At the present time there exist reliable and widely used mathematical models for calculation of 

nonsteady state heat exchange during casting, which allow prediction of temperature fields with an accuracy sufficient 
for practical purposes [1, 2]. 

As for modelling of thermal stresses and deformations specifically, there is at present no one unified approach. 

Thus, [3] utilized a thermoelastic approximation, [4-6] solved the thermoelastoplastic problem, while [7-9] used a 
model involving viscoelastic behavior of the material. There also exist a large number of other formulations of the 

problem within the framework of these basic approaches. The differences between results of calculations with the 

various models are often quite large. As was shown in [9], the stresses in the early stages of solidification of a steel 
ingot in continuous casting crystallizers calculated by the thermoelastic model are two orders of magnitude greater 

than the stresses found in the viscoelastic model. At the same time the relaxation time estimates carried out in [6] 

indicate the possibility of neglecting viscous effects in this case. The situation is complicated even more by the lack of 

reliable data on mechanical properties of the materials involved at high temperatures. 

As was noted in [8, 9], at present two basic approaches are used most widely for calculating thermal stresses in 
the ingot, based on models of elastoplastic and viscoelastic behavior of the material involved. 

The present study will carry out a comparison of these approaches with each other and with the thermoelastic 

solution using the simple yet practically important case of solidification of a planar ingot of type 45 steel in a cast iron 
mold. 

To calculate the thermal processes the mathematical model of [2, 5], well recommended by practice, was used 

for solidification of a planar ingot of thickness 2H 1 with mold wall thickness H a, which model with the origin chosen 
on the ingot axis has the form 

OT~ _ _ ~  (1) OT~ ~ Zl(TO , 
01(T1) cI(T1) 0--~ = OX OX ) 

c)Te 8 ~ ( T 2 )  Ox " (2) ~,~ (TO c~ (T~.) aT O~ ,, ' 

OT, 
TI[z=o = To1, T21~:o = To2, ~ x:o = 0, (3) 
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where the subscript 1 refers to the casting, 2 to the mold. 

In accordance with the recommendations of  [1] in the liquid portion of the casting we take 

)~1 (T1 (0, ~)) -- Z~ (1 -}- a(T  I (0, ~) - -  TL)'/4). (8) 

Dependences of the thermophysical properties on temperature were taken from [10], with ~ and x 2 from [111. 

Following [111, in Eqs. (4), (5) we neglect contact thermal conductivity, which may produce a marked 

contribution to heat exchange only in the initial stage of  solidification and has little effect  on the dynamics of 

solidification in ingots of  mass greater than 8 ton. 

The model described contains the two quite undefined parameters x 1 and a, the values of  which depend 
significantly on the concrete technological conditions. Therefore  the model can be refined by parametric 

identification, which in the given case reduces to finding x 1 and a by minimizing the discrepancy of  the mean square 

deviations of  the calculated and measured temperature on the ingot axis and in the mold at a distance of 3.10 -2 m 

from its working surface. 

This extremal problem was solved by standard gradient methods. The calculated dynamics of the process up to 

the moment of  complete solidification of  the ingot at H x ; 0.36 m, H2 -- 0.2 m, T m = 1850 K are shown in Fig. 1. 

In constructing the mathematical model for  calculation of  thermal stresses and deformations it was considered 

that formation of the stressed state occurs under conditions of changing skin thickness over time, complex heat 

exchange, etc., i.e., according to the terminology of [12], under complex loading conditions. Under  such conditions 

calculation of stresses and deformation in the presence of  plastic or viscous effects requires consideration of the 

loading history. This can be achieved with sufficient accuracy only within the framework of the flow theory of [12], 

in accordance with which the process is divided into two successive stages and the problem solved in terms of 
increments to the stresses and deformations during successive changes in loading. 

In this case the solidifying portion of the ingot can be considered infinite along the axes y and z of  a plate of 

thickness h, which varies with time and is defined by the current position of  the isotherm Ts, which can be found by 

solution of the thermal problem of Eqs. (1)-(8). 
Neglecting external mechanical loads as compared to thermal ones and considering that the plate temperature 

depends only on coordinate x, in accordance with [12] for  any nth stage of  loading we obtain 

Ao~ (x) = A(~ (x), (9) 

/1 

1{~ -- lo2.y :-- 1~.~ = A o ~  = 0. (10) 

The equilibrium equation for conditions (9), (10) is satisfied identically. The deformation compatibility 

equations take on the form 
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Fig. 1. Change in thickness of skin (1) and ingot surface temperature (2) during solidification. T, K; x, 

m; T, sec. 

Fig. 2. Thermoviscoelastic stress dynamics in growing skin: 1) r - 92 see; 2) 112; 3) 172. 
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Fig. 3. Stress distribution over skin thickness at time r = 170 sec; 1) model of ideal elastic material 
behavior; 2) viscoelastic material behavior (Maxwell variant); 3) viscoelastic model (Norton variant); 4) 

elastoplastic model, a, MPa. 

Fig. 4. Stress distribution over skin thickness at moment of complete solidification; 1) ideal elastic 
model; 2) elastoplastic model. 

0~. ,~ OzAQ' ~Lxey = 0 ,  - - 0 .  (11) 
ax 2 Ox z 

The expressions relating the total increments in deformations, as well as their elastic Ae ~, plastic AE p, viscous Ae c, 
and thermal As a" components with the stress increments have the form [13] (subscript n omitted for brevity) 
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The tangent modulus E k and the temperature compliance fl depend on temperature and the stress intensity cri [13] and 
can be calculated from empirical cr--s extension diagram. A number of  variants of creep theory exist, of  which for 
the present we will consider Maxwell theory, according to which the creep velocity in our case has the form: 

and Norton theory: 

V :~ - S . , .  , V u .... S,j 
2G% 2G'q, 

3 B(T)~_~(T~_.ISx, Vu ,3 t 3 2 :: 2 (7")~ 

According to [8] the relaxation time of  type 45 steel is a function of temperature rp(T) = 9.10Sexp(--0.0114 T). The 
study [9] presented graphs of  B(T) and m(T) for a steel close in composition to type 45, which in the temperature 
range of interest to us can be approximated in the form m -- 5; log B = 0.0117(T -- 273) --  21.69. The problem was 

solved at each loading step by the method of  [14]. 
It follows from [11] that 

Ar~ ::  A% -: a 0 q- • (14) 

The undetermined constants e o and x o can be found from the conditions of  absence of mechanical stresses and 

moments 

/~ h 

j" A o # x  = O, S x A ~ d x  = O. 
0 0 

(15) 

In [15] values of  Aay were used found from substitution of  Eq. (14) in Eq. (13): 

% q_•  A e r -  A~ @ ( %(1 --bQE z dTdE %E dTdIa' FrS~j)AT 
A% = (16) 

\--L +-377-, ) 
After substitution of  Eq. (16) in Eq. (15) the integrals were found numerically. The expanding grid method was used, 
with the node coordinates changing with time in proportion to the change in skin thickness. As a result at each loading 
step Eq. (15) provided a system of linear algebraic equations the solution of  which provided % and u o and then, using 
Eq. (16), Aay. Having summed the change in stress thus obtained with the stresses accumulated in previous steps, we 
find the total stress in the nth loading step: cry = cry + Acry, after which we move to the next step. 

In performing the calculations the temperature dependence of  mechanical properties presented in [9] were 

used. 
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Stability of the solution was insured when viscous effects were considered (Aee # 0) by choice of time steps 
Ar less than the characteristic stress relaxation times in the hottest regions of the ingot. A sufficiently precise and 
stable solution of the elastoplastic problem (Ae c = 0) can be obtained by satisfying the condition AT _< 10 K for each 
step in ingot thickness. 

Numerical solution was carried out using the temperature fields obtained with the model of Eqs. (1)-(8). The 
calculated stress fields in the initial stage of ingot formation corresponding to the solidification dynamics shown in 
Fig. 1 are stages of solidification compressive stresses develop near the cooling surface, their profile corresponding 
fully with the results of [9] for the case of continuous casting. With further increase in skin thickness the stresses 
undergo a qualitative change. It follows from Fig. 3 that the solutions obtained in the elastic (AeP = 0, Aee = 0) and 
elastoplasfic (AeP ~ 0, Aee = 0) approximations practically coincide. This can be explained by the smallness of the 
stresses themselves, which exceed the elastic limit only slightly, despite the high temperatures. Consideration of 
viscous effects significantly decreases the stresses, while solutions obtained with the two viscoelastic material models 
are quite close to each other, despite the significant difference between the models. Plasticity manifests itself much 
more significantly in the latter stages of solidification. As is evident from Fig. 4, the elastoplastic approximation yields 
stresses approximately half as large on the cooling surface than the purely elastic model. 

Conelus|on. At present there are no experimental data available which permit direct or indirect determination 
of the adequacy of the models studied for ingot solidification. However it should be noted that despite quantitative 
divergences, the results of all models studied do agree qualitatively. 

The studies performed permit the conclusion that the true stresses in a solidifying ingot lie in a region bounded 
above by stresses determined by the elastic model, and below by the viscoelastic models. More precise quantitative 
estimates are apparently impossible at present due to the lack of reliable data on thermophysical and mechanical 
properties of materials at high temperatures, inhomogeneity of the ingot, and the presence of zones with isometric and 
columnar crystals. 

NOTATION 

To1, To2, T s, T L, Tr T(x, r) are initial temperatures of melt and mold, temperatures of solidus, liquidus, and 
surrounding medium, temperature field: p, c, A L, density, specific heat, thermal conductivity, and latent heat of 
solidification; cs, q ,  ct, At, specific heats of solid, two-phase and liquid zones of ingot, thermal conductivity of melt; 
x, a, radiant and convective heat exchange coefficients; Ao n, Ae n, stress and deformation increments in step n of 
loading; At, time increment; AT, temperature increment at point studied within ingot thickness; E, G, g, moduli of 
elasticity and shear and Poisson coefficient; aT, linear expansion coefficient; Sx, Sy, stress deviators; a, stresses 
accumulated by step n of loading. 
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CONTACT CONDUCTIVITY OF CRYOGENIC HEAT INSULATION 

MATERIALS 

S. B. Mil'man and M. G. Velikanova UDC 536.21 

Results are presented of an experimental investigation by the method of the electrothermal analogy for 

the contact heat transfer in different kinds of cryogenic thermal insulation and empirical dependences 
are obtained that permit execution o / a  qualitative, and in a number of cases, even a quantitative estimate 
of the contribution of the contact conductivity to the total heat transport through heat insulation. 

In principle, the possibility of an experimental study of contact heat conductivity in disperse materials by the 
method of the electrothermal analogy (ETA) was shown in [1]. This permits investigation of the contact heat 
conductivity in a pure form separate from its relationship to other heat transfer mechanisms by measuring the 
magnitudes of the material electrical resistivity under varying loads. 

This paper is devoted to a more detailed study of the regularities of contact heat transfer in powder, fiber 
sheet, and multilayer systems utilized in cryogenic heat insulation. 

We shall first examine the first two groups of materials. Analysis of the data obtained for them is facilitated by 
the possibility, verified in [2, 3], of utilizing the assumption of additivity of the radiation and conduction in such 

media. 
Dependences of the specific electrical conductivity on the density are presented in Fig. 1 for a number of 

powder and sheet fibrous materials applied most extensively in vacuum-powder (VPI), vacuum-fiber (VFI), and 
vacuum-multilayer (VMI) heat insulations. 

As is seen from the figure, the dependences mentioned are straight lines in logarithmic coordinates and are 
approximated by an expression of the form 

~ p ~ .  (1) 

The values of the exponent k in this formula are given in Table 1 for the materials investigated. 
Our data show that the specific electrical conductivity, and therefore, the contact thermal conductivity of pure 

powders (without metallic admixtures) and of packets of sheet fibrous materials vary in proportion to their density. 
The addition of metallic admixtures (particularly the bronze powder BPI) shielding the thermal radiation into powder 
insulation results in noticeable magnification of the dependence of the contact conductivity on the density. Because of 
the long duration of the experiment, there are practically no such data obtained by the calorimetric method. Only the 
dependence ~c--P for the mixture aerogel with 45 mass% BPI, shown in Fig. 1 for comparison and approximated by 

the expression 

~e~-'O 4,21 (2) 

is presented in [4]. This dependence is in good agreement with an analogous expression for the mixture of aerogel with 
40 mass% BPI but its somewhat greater steepness in the first case is due to the elevated content of metallic powder in 

the mixture. 
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